
Deep Hedging with Non-Parametric Volatility Surfaces and
Explicit Forecasting

Learning from Market Data and Human Observable Information

Damanveer Singh Dhaliwal

December 9, 2025

1 Introduction

Options hedging remains a critical aspect of quantitative finance, with traditional models such as the
Black-Scholes delta hedging relying on strong assumptions. These assumptions, such as continuous
rebalancing, constant volatility, no transaction costs, rarely hold in real markets. Given the crucial
role of options hedging in financial risk management for banks, hedge funds and institutions, there
is a pressing need for more robust and adaptive hedging strategies that can better capture market
dynamics and uncertainties.

Recent advancements in machine learning, particularly deep reinforcement learning (DRL), have
opened new avenues for developing sophisticated hedging strategies. Unlike traditional approaches
that derive hedging ratios from closed form solutions under simplifying assumptions, DRL methods
learn optimal hedging policies directly from data maximizing a reward function that reflects the
hedger’s objectives, such as minimizing risk or maximizing utility. This data-driven approach allows
the DRL agent to navigate complex non-linearities and the transient nature of the financial markets
without making any explicit assumptions of the underlying relationship.

Notably, Buehler et al. (2018) showed the potential for deep hedging using RL and its poten-
tial to outperform traditional hedging strategies. François et al. (2025) further demonstrate that
deep hedging can significantly outperform classical methods, especially in markets characterized by
frictions such as transaction costs and liquidity constraints.

However, a notable limitation in the existing literature is the reliance on simulated market data
generated from parametric stochastic volatility models such as the Heston or SABR (Heston (1993)).
While these models capture certain parameters of the options markets, such as the volatility smiles
and mean-reverting variances, they often fail to fully encapsulate the complexities and nuances of
real-world market dynamics given their parametric nature. Activity such as regime shifts, liquidity
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crises, and market microstructures are very difficult to model accurately using these parametric
frameworks.

To address these limitations, this paper proposes a novel approach to train deep hedging agents
on real market data. Specifically, we use SPY options from 2011 to 2023, obtained from the WRDS
OptionMetrics database. The intention is to allow the DRL agent to access the same information
available to human traders: the full structure of the volatility surface across strikes and maturities.

We employ a three-stage data pipeline to handle the high-dimensional and complex nature of the
options data. First, we compress the 374-dimension volatility surface into a compact latent represen-
tation using an autoencoder. Second, an LSTM network forecasts the evolution of future volatility
surfaces, providing the agent predictive information about the market. This is intended to replicate
a human trader’s implicit opinion of the future market conditions based on historical patterns. Fi-
nally, a reinforcement learning agent learns optimal hedging actions using these representations as
state inputs. This three stage process allows us to investigate whether explicit forecasting improves
performance and how the representation of the volatility surface impacts hedging effectiveness.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature on
deep hedging and place our work in context. Section 3 describes the data, model architecture
and training methodology. Section 4 presents the empirical results and performance comparisons.
Finally, Section 5 concludes with discussions on implications and future research directions.

2 Literature Review

Buehler et al. (2018) presented the foundational work on deep hedging using reinforcement learn-
ing and established the theoretical and computational framework that launched the entire field.
Their approach relies on using a Monte Carlo Policy gradient method to train a neural network
on simulated price paths. The key results demonstrated that neural network based strategies can
approximate optimal hedging solutions.

There were two parallel strands of research that complemented this initial work. Kolm and Ritter
(2018) demonstrated that a deep reinforcement learning model agent learns to minimize variance
in its hedge without explicit knowledge of volatility, the strike price or even the payoff function. It
only requires the transaction costs and the price paths. This work highlighted the model-free nature
of deep hedging and its ability to adapt to different market conditions.

During the same time, Halperin (2019) proposed the QLBS model, which combines reinforcement
learning with the classical Black-Scholes-Merton framework. The QLBS model showed that option
prices naturally emerge from the RL framework as the optimal value function, providing a bridge
between traditional financial theory and modern machine learning approaches.

A significant methodological advancement was made by François et al. (2025), who introduced
the use of the full implied volatility surface as part of the state representation for the RL agent.
Their results indicated that incorporating the volatility surface led to substantial improvements in
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hedging performance, particularly in markets with transaction costs and liquidity constraints.
Other notable contributions to the deep hedging literature include Carbonneau (2020) who

extends deep hedging to long-term derivatives like variable annuities and showed that non-quadratic
penalties reduced downside risk in comparison to benchmarks. Imaki et al. (2023) introduced the
no-transaction band network architecture that allows the agent to learn no-transaction regions,
improving performance and training speed significantly.

Horvath et al. (2021) compare the performance of different hedging strategies under rough
volatility models showing that deep hedging outperforms classical delta hedging in these more
realistic settings. Finally, Cao et al. (2019) advanced the literature by introducing a distributional
RL framework capable of optimizing mean-variance objectives. However, they also rely on simple
low-dimensional state representations.

A critical gap in early deep hedging work is the reliance on simulated data. Mikkilä and Kan-
niainen (2023) provided one of the first demonstration of training deep hedging agents on directly
observed market pricing data. They find that a model trained on real market data outperforms one
trained on simulated data when evaluated on real market conditions. However, their state repre-
sentation is limited to a few summary statistics of the volatility surface rather than the full surface
itself.

The literature reveals a clear trajectory where deep hedging provides a flexible and powerful
framework for options hedging. However, existing work still relies heavily on simulated data and
simplified state representations. This paper aims to address these gaps by training a deep hedging
agent on real market data using the full volatility surface and incorporating explicit forecasting of
future surfaces.

3 Model Architecture

3.1 Black-Scholes-Merton Model

The Black-Scholes(-Merton) model (Black and Scholes (1973)) is a foundational framework in finan-
cial mathematics for pricing European-style options. The model determines the price of an option
based on the dynamics of the underlying asset’s price and time. It assumes that the price of the
asset follows a Geometric Brownian Motion with constant volatility and drift. It relies on 5 key
variables: the current price of the underlying asset St, the strike price of the option K, the time to
maturity T − t, the risk-free interest rate r, and the volatility of the underlying asset’s returns σ.

The price of a European call option C(St, t) under the Black-Scholes model is given by the
formula:

C(St, t) = StN(d1)−Ke−r(T−t)N(d2)

where:

d1 =
ln(St/K) + (r + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t
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and N(·) is the cumulative distribution function of the standard normal distribution.
The model is a theoretical construct that provides closed-form solutions for option prices and

subsequent hedging strategies. However, it relies on ideal market conditions that do not exist in
practice, such as no transaction costs, continuous trading, and constant volatility. These limitations
have led to the development of more sophisticated models and approaches, including the use of
machine learning techniques like deep hedging.

3.2 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning where an agent learns to make se-
quential decisions through positive reinforcement to interact with an environment, with the goal of
optimizing a reward or minimizing a penalty. The agent does this through trial and error, learning
from the consequences of its actions over time. See Sutton and Barto (2018) for a comprehensive
introduction to RL.

In contrast to supervised learning, where the model learns from a labeled dataset, RL involves
learning from the environment itself. Additionally, RL differs from unsupervised learning, which
focuses on finding patterns in data without explicit feedback. In RL, the agent receives feedback
in the form of rewards or penalties based on its actions, allowing it to learn optimal strategies over
time.

In this paper, we will follow the notation of Sutton and Barto (2018). At each discrete time
step t, the agent observes some representation of the environment’s state St ∈ S, where S is the set
of all possible states, and selects an action At ∈ A(St), where A(St) is the set of actions available
in state St. In the next time period, the agent receives a reward Rt+1 ∈ R ⊂ R based on its action
and the environment transitions to a new state St+1 according to the environment’s dynamics. The
figure below diagrams the agent-environment interaction loop.

The Agent
(Neural Net)

The
Environment

Action (At)

State (St+1)

Reward (Rt+1)

Figure 1: RL Agent-Environment Interaction

The agent’s behavior is defined by a policy π, which maps states to actions. The goal of the
agent is to learn an optimal policy π∗ that maximizes the expected cumulative reward over time,
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often discounted by a factor γ ∈ [0, 1) to prioritize immediate rewards over distant future rewards.
The cumulative reward, or return, from time step t is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .+ γTRT

where T is the terminal time step.
Reinforcement learning is particularly well-suited for problems like options hedging, where de-

cisions must be made sequentially in a dynamic and uncertain environment. By learning directly
from market data, RL agents can adapt to changing conditions and optimize hedging strategies
without relying on rigid assumptions.

Given that the financial objectives are clearly quantifiable, such as minimizing hedging error or
maximizing risk-adjusted returns, RL provides a sophisticated framework for developing hedging
strategies that can outperform traditional methods by adapting to market frictions like transaction
costs. Additional explainable layers can be added to the architecture to ensure interpretability of
the learned strategies.

3.3 Proposed Architecture

The proposed extension to the deep hedging framework introduced in François et al. (2025) involves
a three-stage architecture. First, we compress the high-dimensional volatility surface into a low-
dimensional latent representation using an autoencoder. Second, we use an LSTM network to
forecast future volatility surfaces based on historical data. Finally, we train a reinforcement learning
agent to learn optimal hedging strategies using the latent representations and forecasts as state
inputs. This architecture is designed to leverage the full information contained in the volatility
surface while also incorporating predictive insights about future market conditions.

The SPY options data used in this project consists of daily implied volatility surfaces spanning
from 2011 to 2023 that were constructed from market prices downloaded from the Wharton Data
Research Services (WRDS) OptionMetrics (2025) database.

A detailed description of each component’s model and parameters has been presented below:

3.3.1 Autoencoder for Volatility Surface Compression

The volatility surface for SPY options is represented as a high-dimensional matrix, with dimensions
corresponding to different strike prices and maturities. With 34 different delta and 11 maturities,
the total number of dimensions balloons to 34 × 11 = 374. A representation of the data used is
shown below:
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Figure 2: SPY Implied Volatility Surface

Using such a high-dimensional input directly in the RL agent is computationally intensive and
may lead to overfitting. To address this, we employ an autoencoder, a type of neural network
designed for unsupervised learning of efficient codings. The autoencoder consists of an encoder
that compresses the input volatility surface into a low-dimensional latent space and a decoder that
reconstructs the original surface from this latent representation.

The architecture of the autoencoder is as follows:

• Encoder: The encoder consists of several convolutional layers followed by fully connected
layers that reduce the dimensionality of the input volatility surface to a latent vector of size
32.

• Decoder: The decoder mirrors the encoder’s architecture, using transposed convolutional
layers to reconstruct the volatility surface from the latent vector.

• Training: The autoencoder is trained using mean squared error (MSE) loss between the
original and reconstructed volatility surfaces. A ReLU activation function is used in the

6



hidden layers, and 20% dropout is applied to prevent overfitting. The Adam optimizer is used
with a learning rate of 0.001, and training is performed for 200 epochs with a batch size of 64.

The figure below illustrates the architecture of the autoencoder used in this project (generated using
Google’s Nano Banana Pro AI Model):

Figure 3: Autoencoder Architecture for Volatility Surface Compression

The trained autoencoder achieves a reconstruction MSE of 0.1060 on the test set, indicating that
it effectively captures the essential features of the volatility surface in the latent representation.

3.3.2 LSTM for Prediction

To provide the RL agent with predictive insights about future market conditions, we use a Long
Short-Term Memory (LSTM) network to forecast the evolution of the volatility surface over time.
The LSTM is well-suited for time series data due to its ability to capture long-term dependencies
(Fischer and Krauss (2017)).

During training, the LSTM takes as input 5 consecutive days of latent representations produced
by the autoencoder with 32 dimensions each. The 5-day lookback window was chosen to capture
short-term volatility dynamics and computational efficiency. Sensitivity analysis exploring alterna-
tive window lengths is left for future work. There are 2 stacked LSTM layers, the first processes
the raw input sequence and the second processes the first LSTM’s outputs. The ReLU activation
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function is used and a dropout of 30% is applied to prevent overfitting. The Adam optimizer is used
with a learning rate of 0.001, and training is performed for 200 epochs with a batch size of 32.

The LSTM is trained on the initial 80% of the data to minimize the mean squared error, with
the remaining 20% reserved for test. The model’s performance is evaluated using Mean Squared
Error (MSE) between the predicted and actual latent representations of the volatility surface.

The performance of the LSTM model on the test set shows an MSE of 0.0281, indicating that
the model effectively captures the temporal dynamics of the volatility surface but was unable to
outperform a naive baseline that assumes the volatility surface remains constant over time.

3.4 Reinforcement Learning Agent Design

The final component of the architecture is the reinforcement learning agent, which is based on the
agent used in François et al. (2025). The agent uses a RNN-FNN architecure to process the state
inputs and learn optimal hedging strategies.

Once again, the training happens on the initial 80% of the data, with the remaining 20% reserved
for test. The agent observes a state vector built from 5 base features: current price of the underlying
asset, time remaining to expiration of the option being hedged, portfolio value, previous position
and option type (call or put). Additionally, the agent observes current volatility features (either
latent or the full surface) and the predicted volatility surface.

Each epoch runs 100 batches with normalized prices with S0 = 100 and a strike price of K = 100.
The normalization ensure consistent scaling across different time periods. The agent begins with
the option premium received from selling the option that must be hedged. Subsequently, for each
timestep t, the agent selects the number of shares to hold (as a hedge), calculate transaction costs
based on the formula cost = 0.01 × price × |δnew − δold|. The portfolio value is then calculated as
portfolio_value = δ × (St+1 − St)− cost.

The payoff each timestep is calculated as what the hedger owes minus what they have in their
portfolio. For a put option, this is shown below:

payoff t = max(K − ST , 0)

Similarly, for a call option, the payoff is:

payoff t = max(ST −K, 0)

The reward function is defined as the hedging error:

hedging_error = payoff − portfolio_value

The agent’s objective is the minimize the MSE of the hedging error over the entire episode. The
results from the agent’s performance are presented in the next section.
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4 Empirical Results

4.1 Autoencoder Performance

The performance of the autoencoder model is evaluated based on its ability to reconstruct the
original volatility surface from the compressed latent representation. The reconstruction quality is
measured using Mean Squared Error (MSE) between the original and reconstructed surfaces. A
side-by-side comparison of the original and reconstructed volatility surfaces is shown below:

Figure 4: Autoencoder Reconstruction Performance

The autoencoder achieves a reconstruction MSE of 0.1060 on the test set, indicating that it
effectively captures the essential features of the volatility surface in the latent representation. It can
be observed that the reconstructed surface closely resembles the original, preserving key character-
istics such as the volatility smile and term structure. However, some information loss is inevitable
and can be seen that the reconstructed surface is smoother than the original especially in regions
with high curvature.

4.2 Predictor Performance

The LSTM model’s performance is evaluated based on its ability to forecast future volatility surfaces
using the latent representation and the full volatility surface. The model’s performance is measured
using RMSE and compared against a naive baseline that assumes the volatility surface remains
constant over time. A full time series plot of the predicted vs actual implied volatility for an at the
money option is presented below:
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Figure 5: LSTM Prediction Performance on Full Volatility Surface

This LSTM model was trained on the full volatility surface and achieved an RMSE of 0.0281
which was inferior to the naive baseline of 0.0150. The model struggled to isolate meaningful
temporal patterns from the high-dimensional input data, leading to suboptimal predictions. We
can observe this in the the figure above where the predicted values show a consistent lag.

In contrast, the LSTM model trained on the latent representation produced by the autoencoder
achieved an RMSE of 1.2110, outperforming the naive baseline of 1.235. This highlights the ad-
vantage of using a compressed representation that captures the essential features of the volatility
surface while filtering out noise.

While the RMSE values are not directly comparable due to the differing feature spaces, the
predictor using the latent representation demonstrates superior performance relative to its baseline,
indicating that the autoencoder effectively distills relevant information for forecasting. In the next
subsection, we will compare the hedging performance using both predictors to validate the economic
value of these results.

4.3 Hedging Agent Performance

To evaluate the performance of the reinforcement learning hedging agent, we compare its hedging
error against a classical delta hedging benchmark derived from the Black-Scholes-Merton model.
The hedging error is calculated as the difference between the option payoff and the portfolio value
at maturity, with lower values indicating better hedging performance.

We also compare the performance of agents using different state representations and predictors.
The RL-Hybrid agent uses a hybrid approach and combines the current compressed latent repre-
sentation of the volatility surface with the predicted full volatility surface allowing the agent to
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leverage compact present information and rich predictive information. The results are summarized
in the table below:

Table 1: Comparative Hedging Performance (MSE & RMSE) across 63-day Test Horizon

Strategy Put MSE Put RMSE Put Imp (%) Call MSE Call RMSE Call Imp (%)

BS Delta (Baseline) 9.0402 3.0067 0.0000 9.5158 3.0848 0.0000
RL-Latent (No Pred) 4.8462 2.2014 46.3932 7.6199 2.7604 19.9239
RL-Latent (Pred) 4.9841 2.2325 44.8673 11.3206 3.3646 -18.9665
RL-Full (No Pred) 5.5338 2.3524 38.7873 9.8034 3.1310 -3.0224
RL-Full (Pred) 7.7873 2.7906 13.8593 9.4257 3.0701 0.9465
RL-Hybrid (Proposed) 5.9724 2.4439 33.9350 10.3482 3.2169 -8.7471

These results clearly indicate that the RL framework consistently outperforms the Black-Scholes
delta baseline for put options across all architectures, improving MSE by 33% to 46%. For call
options, the results are mixed, with only the latent model without the predictions agent providing
a substantial improvement over the baseline.

We believe that the superior performance on put options is due to the volatility skew inherent in
the equity index markets. The Black-Scholes model assumes constant volatility surface and thereby
fails to capture any increase or decrease for any puts that command higher volatilities. For call
options, the volatility surface is usually flatter and is closer to the Black-Scholes assumption of
constant volatility, making the baseline more difficult to surpass. Given the difference in market
dynamics for the training set (pre-pandemic) and the test set (post-pandemic), the RL agent received
more room to learn effective hedging for puts.

It should also be noted that the inclusion of an explicit volatility forecast did not consistently
improve performance over the latent agent other than the agent hedging call options that was trained
on the full feature set. This suggests that the latent representation of the volatility surface likely
encodes sufficient information for optimal hedging, and the explicit forecast introduces prediction
noise that degrades the performance of the reinforcement learning agent.

While the full feature set agent without prediction achieves reasonable performance on the puts,
it shows signs of reduced generalization compared to the latent approach. Adding a predictor makes
the dimensionality problem more severe and deteriorates performance.

4.4 Robustness Checks with Synthetic Data

To further validate the findings from our agent performance, we conduct robustness checks using
synthetic data. Two sets of robustness checks were conducted:

The first one studied the performance of agents (that were trained on real data) on synthetic
data that modeled four different market dynamics: a bull market, a bear market, and a crash
and boom scenario. Synthetic data was generated using the geometric Brownian motion to model
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specific trends and risk levels associated with regimes that have been described before.
To preserve realistic market structures, the corresponding implied volatility inputs were not

generated synthetically. Instead, we employed a historical matching technique that assigned a real-
world volatility surface sampled from the historical date with matching volatility characteristics
to each synthetic regime. This approach allowed for controlled stress testing against hypothetical
price movements while ensuring that the agent interacts with a valid complex volatility surface that
contains all the information that a real one would. Results from this experiment are summarized
in the table below:

Table 2: Robustness Check: Hedging Performance across Synthetic Market Regimes
Regime RL MSE BS MSE Imp (%)

Bull Market 2.3494 8.9816 73.8425
Bear Market 38.5404 10.6196 -262.9172
Crash 199.1328 14.1400 -1308.2939
Boom 4.9560 8.3824 40.8762

Given that the agents were trained on real market data, it is unsurprising that they perform
well in the bull and boom regimes where market conditions are more stable and align with historical
patterns. However, their performance degrades significantly in the bear and crash scenarios, where
the market experiences sharp declines and heightened volatility. This suggests that while the agents
have learned effective hedging strategies for typical market conditions, they struggle to adapt to
extreme downturns that may not be well-represented in the training data.

To further investigate this, we conducted a second robustness check where the models were
retrained entirely on synthetic data. Unlike the previous robustness check where constant volatility
was assumed, this environment modeled volatility as a mean-reverting process with a negative 0.7
correlation to asset returns, capturing the leverage effect observed in real markets. Using this, we
generated a 10-year synthetic dataset for the asset prices that was calibrated to match historical
statistics. The synthetic implied volatility surfaces were constructed dynamically at each time step
using the same approach as our real data, ensuring that the agent had access to realistic volatility
information. The results from this experiment are summarized in the table below:
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Table 3: Pipeline Validation: End-to-End Performance on Synthetic Data

State Mode Use Predictor Is Put Train Loss Final Test Loss State Dim

latent False True 3.4014 4.9388 37
latent False False 3.0406 6.2848 37
latent True True 1.4664 4.0171 69
latent True False 4.1015 5.6497 69
full False True 1.8134 4.7062 379
full False False 5.1245 5.7731 379
full True True 2.2938 8.3267 753
full True False 6.7536 6.8754 753
hybrid True True 1.9198 6.1425 411
hybrid True False 6.8405 6.7068 411

The results from the end-to-end synthetic pipeline provide strong empirical support for the pro-
posed three-stage architecture. The reinforcement learning agent with the latent representation and
access to a prediction achieved the lowest hedging error across all configurations, outperforming the
static baseline. This confirms that in a controlled environment where volatility dynamics are math-
ematically coupled to the price, the latent predictor does extract and transmit valuable information
that is forward-looking.

The information that explicit forecasting did not provide sufficient information with real data
but does with synthetic data supports the hypothesis that real-world volatility dynamics are more
complex and results in academic research may not always translate directly to practice. It is likely
that the LSTM model was learning some spurious patterns in the real data and thus was unable
to provide useful information to the RL agent. This allows for future research directions to explore
more sophisticated forecasting models.

Crucially, we can also observe that the reinforcement learning agent trained on the full dimen-
sions clearly exhibited signs of overfitting, where it achieved a low training loss but the test loss
was significantly higher, the worst among all the put strategies. This degradation validates our
hypothesis that the curse of dimensionality thus prevents the reinforcement learning agent from
making efficient decisions, and dimensionality reduction is a prerequisite for effective forecasting.
By compressing the state-space, our architecture allows the agent to generalize better to unseen
market conditions.
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5 Conclusion

This paper addressed two key limitations in the existing literature of deep hedging: 1. The reliance
on simulated data 2. The use of simplified state representations that discard information available
to human traders We solved for this by introducing a novel framework for deep hedging by training
reinforcement learning agents directly on historical SPY options data from 2011 to 2023. The results
of this experiment demonstrated that data-driven hedging strategies can substantially outperform
classical delta hedging benchmarks.

We propose a three-stage architecture comprising of: 1. An autoencoder compression 2. LSTM
forecasting 3. Policy learning. This design mirrors the decision-making process of a human trader
who would have some forward-looking opinion based on historical patterns when constructing hedg-
ing strategies.

The empirical results revealed several important findings. First, the autoencoder successfully
compressed the 374-dimensional volatility surface into a robust latent representation. Forecasting
these latent dynamics proved significantly more accurate than attempting to predict the full surface
directly, which failed to beat the naive baseline.

Second, the deep hedging agents consistently outperformed the Black-Scholes Delta benchmark
for put options, reducing the mean squared hedging error by approximately 46% in the best-
performing configuration. This confirms that the model can internalize volatility measures from
the surface and correct for these to protect the underlying asset. However, for call options, the
Black-Scholes model shows a baseline that was very difficult to surpass, probably because of the
flatter volatility surface. However, our latent representation model was able to outperform it.

Contrary to our initial hypothesis, the inclusion of explicit forecasting did not consistently
improve hedging performance compared to the static latent agent in the real-world data. However,
when we trained the model on synthetic data and evaluated its performance on synthetic data, the
inclusion of explicit forecasting did provide valuable forward-looking information. This suggests
that there is volatility in the real market dynamic that is unable to be captured by our prediction
model.

However, explicit forecasting did improve performance in the entirely synthetic data pipeline,
confirming that in a controlled environment the explicit volatility-price modelling creates predictable
patterns that the model is able to learn. In real markets, this relationship between volatility and
prices changes often and is more complex, making it difficult for the LSTM to extract meaningful
patterns.

We’d also like to acknowledge some of the limitations of the study. The experiments focused
solely on at-the-money SPY options with a 63-day horizon, leaving open the question of how these
results extend to different money levels, maturities, and underlying assets. The transaction cost
model, while more realistic than frictionless assumptions, remains stylized compared to actual mar-
ket microstructure. Additionally, the sequential training of the three pipeline stages may leave
performance gains unrealized.
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These limitations allow us to envision some avenues for future research:

• The framework can be extended to portfolio-level hedging, where agents manage books of
options with correlated underlying assets rather than a single asset. This would test whether
the learned representations capture cross-asset dependencies or not.

• Incorporating additional state variables such as macroeconomic indicators, or order flow data
could further enhance predictive accuracy.

• Interpretability analysis of the learned policies would facilitate adoption by practitioners who
require explainable decision making.
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